In the mid-20th Century, moral questions concerning our nation’s defense, foreign, and economic policies seemed crystal clear. The propriety of the policies especially seemed clear in regards to our nation’s defending Western democracy against the spread of totalitarian socialism, as instigated by the Soviet Union. Since the Protestant Reformation and the discovery of the New World, commercial opportunities have empowered European commoners to enjoin democratic states that ensure individual freedoms in a free market. Western democracies have for the most part safeguarded citizen rights. To date, Western governments routinely address the ethical concerns of emerging technologies and commercial development. The governments guard against economic exploitation.

For the people’s interests, Western governments have successfully balanced political platforms that encourage strong government intervention into the economy with political platforms that relegate the government to playing merely an oversight role. Defending the people’s political choices, Western governments have successfully defended their democracies against regimes that not only force government control over their economies, but also seek to impose the regimes’ powers over vulnerable sovereign states. And so, Western governments’ greatest ethical concern, in regards to the free market’s technological propagation, is the proliferation of nuclear technology amongst autocratic socialist regimes that routinely threaten the sovereignty of other nations.

Banding together their military forces and economies, Western nations peacefully met the nuclear threat of the Soviet Union. They isolated the Soviet Union economically in a so-called Cold War. Then after the socialist economy and government of the Soviet Union fell, Western nations promoted the global economy through free trade deals. Like so, Western nations effectively pacified the autocratic nations by making the autocracies’ economic gains more beneficial than the autocracies’ hostile military gains.

The moral questions concerning our nation’s defense, foreign, and economic policies seemed clear, during the Cold War; however, the moral questions concerning our nation’s policies are increasingly unclear in the post-Cold War global era. For example, Western leaders believed that trading with autocratic nations would inspire the autocratic nations to democratize because of their economic gains. Yet, the Western leaders failed to see that the autocratic nations would rather maintain political stability than risk the social turmoil that often accompany the free market’s cycles: they fear to risk the turmoil that usually results from a nation’s inability to ensure constant economic growth for all. The autocratic nations especially avoid liberating their peoples, because the autocracies benefit from
the cheap labor forces of the oppressed. As an outcome, Western nations’ enjoining free trade agreements with non-democratic nations inadvertently sanctions both Western nation’s democratic policies and non-Western nation’s oppressive policies, alike. And so, unlike past generations, the current post-Cold War millennial generation stands without moral clarity: the generation often lacks the moral compass to make ethical decisions about many technological innovations that affect society as a whole.

Though post-Cold War multinational forces retrain autocratic nations from overthrowing vulnerable nations, the proliferation of nuclear armament remains a threat for the millennial generation to face. Further complicating policy decisions is the proliferation of artificial intelligence (AI) without an ethical determination of how AI technology poses unforeseen risks for national defense, human health, labor, and even the commoners’ hard-fought political enfranchisement.

To understand the significance of artificial intelligence (AI), we have only to underscore what sets it apart from other inventions. We have only to note that many abilities define human nature apart from the animal kingdom; however, the two key abilities that stand out are humanity’s capacity to reason and humanity’s capacity to produce tools that enable humanity to overcome their environments. Arguably, AI is the greatest tool that humanity has produced: every tool, be it a hand held tool or an automated tool, requires the skilled decision making and oversight of the person who employs the tool; however, AI gives the tool, itself, a decision making capacity. AI is a computerized machine that mimics human cognition by appearing to perceive its environment as it learns and problem solves within a set domain.

As with the employment of any tool, the employment of AI requires ethical oversight because benefits and dangers arise with the utilization of all tools. Our distant ancestors either decided to use stone flakes as domicile instruments, or decided to use them as spear and arrow heads for weaponry. More recent ancestors at times either decided to transform plowshares into swords, or decided to transform swords into plowshares. Our current ethical dilemma arises from the fact that a rogue nation that has the capacity to produce nuclear energy may easily decide to use its nuclear capacity to produce nuclear weapons.

The essential benefit that artificial intelligence presents is as follows: AI offers labor or services as an auxiliary or augmentation to the human capacity to offer the same labor or services; especially in regards to the degree to which AI offers the labor or services. AI often performs under physical circumstances that inhibit or exhaust human performance. And so, the benefits of AI are far reaching, notably in targeted retail options as well as targeted media and telecommunications services, for example, smart televisions and cellular phones. AI’s performing services in the targeted media and telecommunication’s capacity amounts to the real-time offering of knowledge from, as it were, expert panels standing ready to serve any consumer, per that consumer’s immediate need. AI in robotics offers even more impressive benefits, as seen in unmanned space exploration, manufacturing, transportation, and military operations.

Because artificial intelligence stands upon its capacity to mimic human cognition in decision making, the danger that AI poses is in its limited capacity to achieve the human level of abstract reasoning, in regards to qualitative decision making, though AI excels in quantitative decision making. In other
words, AI cannot effectively make qualitative decisions in terms of acceptable risks versus unacceptable risks per an abstract sense of worth; therefore, the continued employment of AI during instances when unacceptable risks are evident results in moral compromises. For example, many think that the only moral question in increasing AI’s presence in manufacturing is the risk of losing low-skilled workers’ vital manufacturing jobs. Many express concern that crucial Western manufacturing jobs will vanish, like previous manufacturing jobs have vanished to autocratic nations who economically exploit their laborers. Howbeit, the true moral question directly concerns our trusting a vital part of our economy to the limited decision making capacity of artificial intelligence. Having an interest in career advancement, human laborers play a critical role as they routinely spy ways to better products and production. Also, human laborers routinely function as whistle blowers for the general public when products are faulty or when companies operate corruptly. Thus, performing with the critical judgment that AI lacks, human laborers play a significant role in advancing economic innovation and better working environments for the general public.

We may find a litany of examples that demonstrate how a full reliance upon artificial intelligence’s limited capacity for labor or services entails adverse or even moral consequences. For instance, engineers can program autonomous cars to recognize and avoid stray animals crossing roadways; however, only human reasoning enables a human driver to take greater care and risk after the human distinguishes an encounter with a small puppy on a misadventure from a cunning agile fox of the same size. Indeed, our human appreciation for the life of an adorable puppy is almost instinctive; however, our true concern is the risks to human life that AI’s limited capacity poses. For instance, military conflict continues to be the greatest threat to human life, especially when the conflict involves nuclear weapons. The introduction of AI to weaponry exponentially increases the threat. Engineers can program an autonomous drone to return fire when hostile forces fire upon it; however, only a human commander can risk using nonlethal force in deference to diplomacy after the commander distinguishes that the hostile forces are unwilling participants who fire amiss.

Our ultimate concern about fully relying upon artificial intelligence’s limited capacity is AI’s proliferation among autocratic nations who will more than likely ignore the risks. Though the free Western nations triumphed in the Cold War’s nuclear standoff with the Soviet Union, the increasing introduction of artificial intelligence into military weaponry heightens the threat of an uncontrollable war like never before.

Proponents of artificial intelligence believe that they can address AI’s unacceptable risks by programming ethical determinations into AI’s limited decision making capacity. AI developers draw inspiration from cognitive neuroscientists. The neuroscientists have successfully employed a systems approach to mapping the brain’s neurological production of the excitatory and inhibitory chemicals that produce awareness states, emotions, and the other cognitive functions that render conscious decision making. Of particular interest to AI developers is the effort to determine how the neurological processes produce cognition’s predisposition to ascertain spatial awareness of object-property relationships: the predisposition enables conscious predictions; moreover, the predisposition secures an intuitive sense of worth, which limits endless data mining. Thus, the AI developers who pursue AI’s learning and ethical capacity understand that they must somehow mimic the way human learning and ethical determinations emerge from the brain’s intuitive ability to
make predictions, as the brain inherently distinguishes worth in its spatial awareness of objects and their properties.

To mimic the neurological structuring that gives the brain its predictive capacity, artificial intelligence developers employ deep learning algorithms: algorithms, of course, being formal procedures that solve mathematical problems. Programmers design normal algorithms to respond to direct input; however, programmers design deep learning algorithms to respond to data representations of statistically based outcomes. Like so, the deep learning algorithms attempt to mimic a learning process. Programmers have successfully demonstrated the usefulness of deep learning algorithms in such technologies like speech recognition; however, AI enhanced with deep learning algorithms remain far from even approximately human and animal intelligence. AI developers have not discovered nor mimicked the neurological mechanism that gives the brain its predictive capacity. Nonetheless, because of AI’s technological successes, the proliferation of AI technology proceeds, despite the unanswered ethical questions and unacceptable risks.

We do not blame the proponents of artificial intelligence for proceeding with the development of the technology, despite the fact that they fail to match our human capacity for inherent reasoning and value based judgments. Since the dawn of Greco-Roman civilization, philosophers, scientists, and theologians have been trying to define the extent to which humans have an innate capacity to conceive abstract representations of the world prior to actual experiences. Greco-Roman philosophers pioneered modern forms of representational government in response to their philosophical considerations that either question an individuals’ innate reasoning capacity to rule themselves, or question the need for centralized undemocratic government to rule the animalistic nature of humankind. The 18th Century authors of modern government, in like manner, devised Western constitutions by first considering humankind’s state of nature: John Locke (1632-1702) inspired the framers of the U.S. Constitution with the belief that humankind has an innate reasoning capacity; therefore, the framers of the U.S. Constitution sought to limit the power of the Federal government, in deference to the innate liberty of the individual. In contrast, Jean-Jacques Rousseau (1712-1778) inspired the framers of the French Republic’s Constitution with the belief that humankind has a brutish nature that needs censorship; therefore, the framers of the French Republic’s Constitution sought to censor amasses of private wealth and political hegemony. Religious institutes even took up the question of humankind’s innate capacity for reasoning and judgment: excepting some Protestant Christians, all religions hold that individuals have the innate capacity to obtain salvation through religious works, to the extent that the religious judge others who do not participate in their religious actions; whereas Protestants who hold an orthodox belief understand that salvation is not innate but a discriminating divine conferment, to the extent that orthodox Protestants do not judge others: a cultural practice that has facilitated the rise of secular progressive government in the West. In few words, our ability to invest AI with an ethical capacity depends upon our ability to discover and mimic humanity’s innate reasoning capacity: a discovery that philosophers, scientists, and theologians have failed to make.

The only way to discover the extent to which we can invest artificial intelligence with an ethical capacity by our capturing humanity’s innate reasoning ability is to resolve the mind-matter explanatory gap: two unresolved questions that first ask what gives the mind the capability to stand apart from the world, while generalizing perceptions per the mind’s state of being, and second ask to
what extent does the mind’s environment frame the mind’s perceptions. Both questions constitute the nature verses nurture question.

Most thinkers throughout history believed that the mind-matter explanatory gap were unsolvable; however, we thelandscapeoftruth.com understand that the answer is now straightforward and readily apparent. Ongoing scientific, philosophical, and theological advancements have presented the means for us to answer the question in the early 20th Century: a critical period in which physicists discovered that energy only exist in discrete quantities (quanta). The discovery presented the profound consequence that the subatomic world never exists in exact states in spacetime. The physicists found that we can only employ a statistical process that physicists term renormalization to know the exact nature of the macroscopic world that we seemingly observe in continuity.

As often occurs in history, scientists, philosophers, and theologians overlook the profundity of new discoveries because they cannot appreciate the vital roles that each of their respective disciplines play in advancing our understanding of the new discoveries. For instance, scientists frequently ignore philosophers’ epistemological considerations of the innate structure of our knowledge and the objective knowableness of what we observe. Likewise, philosophers regularly fail to seek the scientific method’s falsifiable examinations in order to prove their philosophical speculations. What is more, both scientists and philosophers routinely disregard theologians’ pursuit of a cosmological truth; wherein the theologians go one step further than the philosophers’ consideration of our knowledge structure and the knowableness of what we observe. Instead of merely considering the nature of our innate knowledge structure, the theologians consider the human worth of our minds’ liberty apart from the world; moreover, instead of merely considering the knowableness of what we observe, the theologians consider the inherent meaning of our experiences. Notwithstanding, though our theological understandings frame our constitutional conceptions of liberty and justice, as well as many other ethical determinations, the theological understandings are not scientifically falsifiable. In this way, scientific advances like artificial intelligence stand without an ethical compass.

Some contemporary theories do try to explain the meaning of energy’s quantized nature and the resulting macroscopic world that we mathematically normalize to secure critical observations of; however, all the theories amount to science fiction because none of the theories are scientifically falsifiable. Since none have apprehended the significance of our normalized apprehension of the world, mainstream scientists, philosophers, and theologians often ignore the significance. As a consequence, cognitive neuroscientists do not consider our need to renormalize energy’s quantum indeterminacy as playing a role in our identifying the mind’s rational capacity.

We have so entitled our website, thelandscapeoftruth.com, based upon the premise that we recognize the correlating roles that science, Western philosophy, and orthodox Christian theology have played in advancing modernity’s Western styled democracy, free market, and liberal society. We recognize the correlating contributions that scientists, philosophers, and Christian theologians make in advancing our understanding of newfound discoveries. By appreciating the joint contribution from science, philosophy, and theology; our landscape perspective stands more apt to recognize the profound implications of energy’s quantum indeterminacy and the subsequent need for us to normalize the appearing world. In point of fact, we understand that consciousness, itself, is a natural normalizing process: consciousness entails a subsuming apprehension of various manifestations of
energy, such as light, soundwaves, and other magnitudinous relationships, under a continuous perception of spacetime. Thus, we understand that cognitive neuroscience’s systems approach to defining consciousness is flawed because the approach fails to recognize the brain and central nervous system’s renormalizing function.

To understand how the brain apprehends consciousness, we have developed a falsifiable model that demonstrates how the brain and the central nervous system (CNS) renormalize energy’s quantum indeterminacy to apprehend consciousness’ unified perception of the world. Our model, which we have entitled Immanuel’s Law, reimagines cognitive neuroscience’s systems approach, by envisioning how to account for the brain’s renormalizing process. First, our model draws from a general understanding of contemporary science’s quantum physics to detail, loosely, what the renormalizing process entails. Second, our model draws from philosophy’s epistemological considerations to describe the structure of knowledge that the renormalizing process conforms to. Third, our model appreciates our theological understanding of freedom to describe how the mind is both free and contingent to the world that it perceives. Finally, to validate the above scientific, philosophical, and theological principles, our model achieves scientific falsifiability.

Our model, Immanuel’s Law, may be a generalization of the manner in which the brain and central nervous system (CNS) apprehend consciousness through a renormalizing process; however, Immanuel’s Law secures the objective means to gauge the feasibility of artificial intelligence developers’ efforts to mimic human cognition as the developers seek to invest AI with an ethical capacity. To describe how our brain and CNS achieve an ethical capacity, our model, Immanuel’s Law, offers a falsifiable description of how the brain and the CNS achieve two abilities during their renormalizing process: first, Immanuel’s Law recognizes that we have the ability to rationalize a sense of identity and self-worth, regardless of particular physical circumstances; moreover, the model recognizes that we have the ability to confer the same sense of identity and self-worth to others. Second, Immanuel’s Law recognizes that we have the ability to employ circumstances as abstract metaphors of universal values that transcend particular circumstances. Immanuel’s Law then describes how the brain and the CNS achieve the two abilities during the renormalization process. Thus, giving detailed falsifiable descriptions of how the human brain and CNS achieve an ethical capacity, our model, Immanuel’s Law, effectively serves as a gauge to AI developers who seek to achieve the same ethical capacity in AI technology. Simply put, our model, Immanuel’s Law, identifies the particular neurological processes that directly translate as the first person sensibility and resulting moral constructs that assume the foundation and safeguard of civilization. If AI developers can program equal sensibilities into machines, the general public could rightly trust the technology with tasks that preserve the wellbeing of society. But if the developers cannot program human sensibilities into machines, then the autocratic regimes could exploit the technology for purposes that threaten the free society.

Let us briefly assess the aim of artificial intelligence, in terms of the true feasibility of its pursuit to mimic and endow human intelligence for the benefit of society. Let us measure the goals of AI developers by what our model, Immanuel’s Law, details as the actual breadth of human intelligence that the brain and the central nervous system enable. Like so, we can grasp a sober and objective understanding of the limitations and potential dangers of AI. Then we can demarcate AI’s societal benefits from AI’s threats. [see more]
To establish a sober understanding of artificial intelligence’s scope, we must look past the unqualified public angst that reacts to AI. Indeed, we must look past the public hysteria that increases with the proliferation of artificial intelligence. The unknown potential of AI technology, like no technology, uncovers public insecurity about the moral aptitude of humanity to remain the caretakers of the world, its environment, and a prosperous free society. The widespread opinion that AI will soon surpass human intelligence reveals the increasing belief that humanity, with all their social deficiencies, will justly yield to the subjugation of superior intelligence. Once upon a time, at the dawn of Western civilization, pervasive was the understanding that human reason would establish democracy and freedom, revealing an enlightened humanity as the rightful custodians of a vast world and its natural resources. Now instead of the enlightened global society that classical philosophers sought, we experience the fallout from greed spurring inequitable global commerce: we experience a rapacious commercial force that consumes natural resources, harming the environment. We see commercial greed compelling free nations to trade with totalitarian nations, integrating free societies with oppressive societies. We witness our sought after liberty ultimately suffering: we see cultural conflict strengthening centralized government, even as global commerce proliferate advanced weaponry, strengthening totalitarian regimes. Thus, rather than having a free enlightened society with the moral aptitude to use AI for the betterment of the people, we possess a society that tends toward authoritarianism: a society that could pervert the technology to oppress free peoples.

The growing concern over the potential misuses of artificial intelligence is valid; however, the fear that artificial intelligence will even approximate the intelligence of the simplest self-aware animal is laughable, though AI is remarkable. AI is nothing more than the conditional instructions of computer programs that govern the set feature recognition domains that are mathematical models of object-property relationships and or database circumstances: that is, relationships and circumstances that sophisticated sensor technology inputs into the AI system while automated mechanisms respond. Because artificial intelligence systems process and respond to circumstances in a manner that surpass the human capacity, AI gives the appearance of true autonomous intelligence; however, AI is not an actual intelligent self-aware agent, because AI does not have the self-identity, standing capacity that appreciates novelty and universality above the object-property patterns that its programmers designed the AI system to recognize. AI, therefore, does not possess natural intelligence’s predictive capacity that sees past its impoverished senses.

The challenge to establishing actual artificial intelligence is to determine and match what enables natural intelligence’s self-identity, that is, natural intelligence’s unique standing capacity that persists despite natural intelligence’s perceived environment. Cognitive neuroscientists observe neuron configurations and highly organized sequenced neuron firings that can accommodate an innumerable amount of novel sense impressions; therefore, many believe that the highly structured neuronal network gives the epiphenomenal appearance that the brain possesses an independent standing that appreciates novelty and universality apart from sense impressions. And so, having considered the sophisticated neuron configurations as the falsifiable explanation for how the brain grasps the epiphenomenon of unique standing, AI developers seek to give machines pattern
recognition capacities that mimic the complex neuronal configurations, which again the developers believe to be responsible for learning.

The highly adaptable neuron configurations may be a falsifiable explanation for the manner in which the brain appears to achieve natural intelligence’s self-identity and unique standing apart from the world that we perceive; however, the cognitive neuroscientists’ explanation does not remotely entail a falsifiable understanding for the states of intentionality that the brain achieves. They have not understood how the brain’s intentional states are unprovoked and proactive: the brain’s intentional states seem to apprehend the underlining physical relationships that the appearing impoverished object-property relationships adhere to. Then through its intentional states, natural intelligence seems to translate all object-property relationships as tools to maintain the a priori precept of self-identity, which proactively pursues novel outcomes to establish its perspectives, universally. Essentially, both cognitive neuroscientists and artificial intelligence developers fail to capture how intentionality constitutes the haecceity, the first-person “like-thisness”, of our conscious experiences: the veritable closing of the mind-matter explanatory gap.

In brief, because cognitive neuroscience does not entail a falsifiable explanation for intentionality, cognitive neuroscience ultimately fails to discover how the brain obtains human consciousness. Cognitive neuroscientists’ simply pointing out how neuronal activity maps onto aspects of human cognition does not explain how electrochemical exchanges amount to consciousness; therefore, like theologians and philosophers’ unsubstantiated statements, concerning intentionality, cognitive neuroscientists’ proclamations amount to tautological statements, which are the mere repeating of unprovable conclusions without falsifiable proof.

By showing how the brain and the central nervous system (CNS) renormalizes energy’s quantum indeterminacy to apprehend consciousness’ unified perception of the world, our model Immanuel’s Law reimagines cognitive neuroscience’s systems approach by establishing a falsifiable explanation of the brain’s intentional states. Artificial intelligence developers ultimately seek to benefit society. Our model Immanuel’s Law seeks the same: Immanuel’s Law seeks to establish human freedom by corroborating the theological, philosophical, and scientific understandings of humanity’s intentional experience.

We fully recognize that not all theologies, philosophies, and scientific postulations are valid. Also, we recognize that many have used theological, philosophical, and scientific conclusions to oppress society. Thus, as we have detailed in our overview, our site thelandscapeoftruth.com champions the New Testament doctrine of election by faith through grace alone, unto the defying of the religious works that many have used to oppress or discriminate against people: we recognize that through the influence of the Protestant Reformation, which championed the New Testament doctrine of “grace alone”, many Europeans and Americans began to accept the rule of a secular society and science, while respecting diverse beliefs. And so, to advance a responsible and orthodox approach to the Holy Bible, we have ensconced Immanuel’s Law in our doctrinal treatise, the Landscape of Truth, which seeks to educate laypeople about the liberating principles of the New Testament that facilitated the rise of the modern state.
To understand Immanuel’s Law and the theological, philosophical, and scientific principles that Immanuel’s Law unites, we must initially understand how Immanuel’s Law resolves the problem of tropes: an obscure problem that nevertheless lies at the heart of our most challenging theological and philosophical problems, concerning epistemology and intentionality. As well, the question of tropes lies at the heart of science’s inability to resolve the mind-matter explanatory gap and artificial intelligence developers’ subsequent inability to capture true AI.

_Trope_, a word that derives from the Greek word _tropos_, meaning to alter or to turn, indicates an instance or characteristic of something that is universally recognized. The capacity to recognize tropes is a fundamental building block of intelligence; however, the trope concept is extremely problematic because the concept implies that we have the innate capacity to apprehend underlining physical conventions in a way that translates contingent perceptions under universal conceptions, often prior to our full experience of the contingent events. The trope concept, therefore, invites a host of theological and philosophical questions like the question of a cosmological cause and the epistemological question, concerning the basis of our knowledge structure and the manner in which our environment incites our knowledge structure; moreover, the trope concept invites the ontological question, concerning the very nature of being and the subsequent manner in which objects relate to one another.

To some extent, we frame the effectiveness of Immanuel’s Law by the manner in which it reconciles the impasse between, first, Christian theologians and Western philosophers’ descriptions of the way we apprehend trope perceptions under universal conceptions and, second, scientists’ criticism of the way that the theologians and philosophers’ descriptions entail no falsifiable proof. First, in a straightforward manner, the Christian theology of God tackles the cosmological cause of our ability to apprehend universal conceptions under contingent perceptions: the Old Testament describes God as YHWH, absolute ontological being. Then the New Testament describes God as being one with His Logos expression who disseminates, that is, metes out God’s absolute ontological being by physically expressing the worlds; as well as expressing us in God’s ontological image to the extent that we stand upon our being in the world by having the capacity to rationalize the world and propositionally “feel after Him (Acts 17:27)”, God’s absolute being.

Next, the Greek philosopher Plato became the first notable thinker to detail how human reason inherently peers past the contingent and impoverished perceptions of the world to apprehend the universal ideals beyond the trope perceptions that we experience. Afterward, Aristotle, Plato’s intellectual successor, became the first notable to articulate the building blocks of anything that human reasoning or proposition can conceive: such building blocks as substance, quantity, qualification; and relative.

Later, elaborating upon Aristotle’s work, the 18th Century philosopher Immanuel Kant (1724-1804) concluded that our capacity to stand upon our being and rationalize the world rests upon our instinctive perception of space and time. Unlike other logicians and scholars of cognition, Kant did not merely assess our propositional conceptions with a predicate calculus, in an attempt to verify our impoverished perceptions of temporal experiences. Instead, Kant conceived a transcendental logic that stands upon a universal spatial-temporal scheme.
Finally, in the mid-20th Century, the German philosopher Martin Heidegger (1889-1976) made an important observation: he understood that our capacity to apprehend a sense of spacetime and thereby rationalize impoverished perceptions of objects as being tropes of universals is an essential building block of intentionality, itself. Heidegger’s work approximated the reality that our capacity to apprehend spacetime gives us the capacity to stand upon our being, in terms of our apprehending the continuity of our identity, as we witness the progression of experiences in spacetime. Likewise, Heidegger understood that our standing upon our being inherently gives us the capacity to translate the impoverished phenomena that appears as tropes of our universal conception of the phenomena’s continuity of identity, persisting despite the changes that the phenomena endure in spacetime.

Though scientists must observe that the theologians and philosophers’ descriptions of our inherent standing upon our being to apprehend universals are not falsifiable, scientists themselves necessarily employ universal conceptions in all scientific theories, such as the universal employment of typology. So as scientific theories become increasingly harder to test and verify, because of technological limitations, the necessity to establish other means to verify our universal conceptions becomes all the more apparent.

For instance, we know that the advancement of artificial intelligence, especially in regards to the equipping AI with an ethical capacity, depends upon the discovery of how we grasp universals: we know that AI’s advancement depends upon how much programming of foreknowledge architecture does AI machines require to mimic human and animals’ capacity to perceive universal relationships prior to our experience of them.

Overall, in mathematically appreciable terms, scientists can objectively describe the executive commands that the brain and central nervous system make to the body; however, like theologians and philosophers, scientists must resort to making dogmatic, tautological determinations to describe how brains regions are responsible for the rationalizations of cognition, which apprehends universality prior to specific experiences.

To establish a falsifiable understanding of how brain regions apprehend cognition, Immanuel’s Law consists of three derivative statements that are formerly a priori synthetic, logic based propositions that are provable: that is, statements that unite independent principles to derive novel and objective conclusions that stand independent of the principles. Immanuel’s Law, therefore, unites the pertinent theological and philosophical descriptions of intentionality with the independent description of the brain’s renormalization process, in order to establish an objective understanding of human cognition.

Because Immanuel’s Law pursues falsifiable proof that reconciles theological, philosophical, and scientific understandings of our environment and the manner in which we perceive it, the scope of Immanuel’s Law is beyond this editorial: the editorial only pursues the feasibility of artificial intelligence’s matching natural intelligence’s capacity to apprehend universal conceptions and thereby ethical sensibility. We, therefore, will only highlight the chief points of Immanuel’s Law’s second derivative statement, which details the brain’s renormalizing process to demonstrate how the brain achieves consciousness and the consequential framing of universal conceptions over contingent trope perceptions. The remaining 1st and 3rd derivative statements pursue falsifiable proof for cosmological purposefulness and systematic theology, respectively.
To begin, let us recall that physicists employ mathematical renormalizing techniques to reconcile energy’s quantum indeterminacy with the uniform macroscopic world. To further appreciate the renormalizing process, we must further understand that energy persists as quantized and discrete particle-wave frequencies that interface in interactions of no certain position or momentum. For this reason, we recognize that physicists must renormalize the uncertain interactions statistically as measured by a constant of proportionality. Like so, they renormalize uncertain microscopic interactions with the macroscopic world.

Because energy’s indeterminate quantum effects occur on an unobservable microscopic scale (to the extent that we seemingly cannot observe any brain function renormalizing quantum behavior with macroscopic impressions), Immanuel’s Law’s second derivative statement adapts existing electromagnetic theories of consciousness. Immanuel’s Law’s second derivative statement observes the fact that the brain’s electromagnetic waves are particle-waves: on a microscopic scale, the particle-waves directly interface with the action potential ions of the brain’s neuronal layers; while, on a macroscopic scale, the particle-waves synthesize the central nervous system’s circuits.

To highlight the chief aspects of Immanuel’s Law’s second derivative statement, we only have to note how the statement accomplishes two key objectives: for the first objective, Immanuel’s Law’s second statement upholds the scientific principle of maintaining falsifiable objectivity as the statement claims to close the mind-matter explanatory gap. As we has said, cognitive neuroscientists resort to making tautological, dogmatic declarations as they simply demarcate the brain regions that they observe to be active during the modes of cognition and awareness states. In contrast, Immanuel’s Law envisages how the brain’s renormalizing processes map directly onto philosophers’ epistemological descriptions of cognition’s knowledge structure, as well as philosophers’ descriptions of the mind’s intentional states: that is, states that enable the mind to peer beyond what it immediately perceives. For instance, Immanuel’s Law understands that an initial renormalizing process must occur to enable unified perceptions that unite varied magnitudinous percepts within spacetime; moreover, Immanuel’s Law recognizes that a subsequent renormalizing process must occur to reduce ongoing environmental impressions unto personalized representations that facilitate and enable probing bodily reactions. And so, by qualifying the manner in which the brain’s renormalizing processes become personalized, Immanuel’s Law’s second derivative statement identifies a physical system that stands out as temporally free, as the renormalizing processes give the system the a priori capacity to translate and anticipate relationships prior to experience.

Furthermore, by envisioning the brain’s renormalizing processes as the falsifiable means to close the mind-matter explanatory gap, Immanuel’s Law second derivative statement achieves the second key objective: Immanuel’s Law elevates philosophy’s epistemological studies to an equal objective understanding with the methodical observations of the applied sciences. Likewise, Immanuel’s Law elevates Christian theology’s understandings, regarding the supervenience and freedom of the human will, unto an equal objective understanding with cognitive neuroscience’s descriptions of
human and animal cognition. By returning certain philosophical and theological principles to equal and objective standing with scientific principles, Immanuel’s Law safeguards Western democratic and Judeo-Christian values to continue their oversight of ongoing scientific and technological innovation like artificial intelligence.

In chapter three of the doctrinal treatise, the Landscape of Truth, introductory material precedes Immanuel’s Law’s derivative statements. The introductory material details the impasse between Christian theology, Western philosophy, and science, in regards to each respective discipline’s approach to the mind-matter explanatory gap. The chapter initially begins with a brief discussion concerning the problematic and non-falsifiable understandings of the nature of God that the remainder of the doctrinal treatise addresses and that Immanuel’s Law secures an objective understanding of. Afterward, the introductory sections describe the impasse’s cause as being science’s inability to verify the existence of the qualitative sense that defines the temporally free and subjective mind. The introductory material notes that determining the nature of the qualitative mind is of chief importance to Church doctrine and philosophy because from the mind’s qualitative sense (qualia) arises the mind’s capacity to apprehend value and ethics; moreover, the material notes that determining the nature of the mind’s qualitative sense gives one the capacity to understand the epistemological structure of intelligence and how the mind qualifies trope instances under universals, prior to experience. The introductory material describes how science unsuccessfully employs observational strategies to reduce the qualitative mind to mechanical explanations that religious theories and unsubstantiated philosophies cannot exploit. To this end, the material notes how scientists employ the emergence theory, the discipline of behaviorism, and cognitive neuroscience; moreover, the introductory material records how contemporary philosophers observe how the scientists’ observational strategies lack an epistemological understanding as well as a phenomenological explanation for the manner in which the mind experiences uniform senses of spacetime, which enable the mind to synthesize past, present, and future experience, a priori.

Finally, the introductory sections describe how we have come to the current impasse that Immanuel’s Law resolves. The sections note that the dramatic successes of scientists’ employment of the scientific method to predict phenomena has advanced physics, biology, and technology to the extent that science’s inability to resolve the mind-matter explanatory gap suggests that a resolution to the problem is unrealistic or an fiction. In this manner, the introductory sections conclude that science’s successes produce the consequence of our facing the challenging ethical questions surrounding the proliferation of perhaps the greatest technological innovation, artificial intelligence, without the traditional guidance of our Western democratic values and Judeo-Christian principles.

To demonstrate how Immanuel’s Law resolves the impasse between Christian theologians, philosophers, and scientists in their struggle to resolve the mind-matter explanatory gap, an illustration precedes Immanuel’s Law. The illustration depicts the limitations of the scientists’ mechanical description of an athlete’s cognitive experience that commands her body, during a sporting event. The illustration at first describes the body’s organization as a means to maintain thermodynamic states, during changing environments. Then the illustration explains most of the athlete’s physical exertions as the consequence of simple to regulatory circuits and reflex arcs; however, the illustration notes that the scientists’ falsifiable mechanical description falls apart as the scientists fail to reduce the athlete’s cognitive actions to observable mechanical operations. In fact, the
illustration underscores the fact that the scientists simply demarcate the brain regions that operate during certain cognitive activity.

In response to the illustration, Immanuel’s Law’s second derivative statement demonstrates how the brain and central nervous system’s renormalizing processes present the falsifiable manner in which the brain’s neuronal layers magnitudinously encode the brain’s existing electromagnetic waves, as representations of the body’s external environment. The second statement notes how a perturbation occurs that other brain regions maintenance to the extent that the statement identifies the system that corresponds to theologians and philosophers’ description of human cognition.

Though this editorial cannot do justice to the breadth of Immanuel’s Law, we can only say that in identifying a system that corresponds with consciousness without resorting to tautological, dogmatic statements, Immanuel’s Law’s second derivative statement identifies the following: Immanuel’s Law identifies the unique physicality that is temporally free but contingent to the brain and central nervous system; thereby Immanuel’s Law identifies the physicality that corresponds to the mind’s qualitative capacity and the manner in which the mind supervenes and anticipate ongoing impressions. Also, the system explains how the mind grasps representational tropes under the a priori propensity to apprehend universals.

Immanuel’s Law’s second derivative statement, along with Immanuel’s Law’s first and third statements, identifies falsifiable explanations for the many capacities of human cognition; however, for the purposes of this editorial, we may conclude that artificial intelligence developers’ efforts to employ deep learning algorithms and other programming techniques to mimic natural intelligence is futile. The developers cannot possibly match the brain’s capacity to renormalize quantum systems to supervene upon ongoing environmental impressions with personalized representations. AI developers’ efforts to enable machines with the qualitative sensibilities of human ethics is sadly laughable; therefore, we conclude that AI technology must never lack extensive human oversight, as determined by the legal overview of Western democratic legislatures. Our site, thelandscapeoftruth.com, will continue to argue for the oversight of AI in future editorials and articles.

In the late 19th Century and early 20th Century, the physicists Max Planck (1858-1947) and Albert Einstein (1879-1955) discovered that energy exists in discrete quantities of proportionality, existing as both a wave and particle. Soon after other physicists like Niels Bohr (1885-1962), Erwin Schrodinger (1887-1961), and Werner Heisenberg (1901-1976) understood that because of energy’s quantum nature, an observer can only determine the exact locations of subatomic elements statistically. In what physicists term the Copenhagen Interpretation, Bohr, Heisenberg, and others soon attempted to formalize the fact that scientists can only apprehend
probabilities in the measurement of physical phenomena, because any actual measurement is impoverished by other potential measurements that energy quanta statistically allow.

The Copenhagen Interpretation had strong opposition in the likes of renowned physicists like Albert Einstein, himself, who famously said that he is convinced that God doesn’t play dice. Also, Einstein mocked indicating that any casual observance of the moon isn’t probabilistic.

Unto this very day, physicists are still in disagreement over the implications of quantum mechanics, that is, the probabilistic apparatus of mathematics that accounts for energy’s subatomic uncertainty in its position and momentum. We of course purport that the brain renormalizes the subatomic probabilities to behold a constant moon and the world that we perceive.

Critical Observation

“I reaffirm once again that KAIST will not conduct any research activities counter to human dignity including autonomous weapons lacking meaningful human control,” declared an embattled Sung-Chul Shin, the university president of one of South Korea’s top universities, KAIST. The alarmed Shin responded to the abruptly organized boycott of the university by top artificial intelligence researchers. The researchers decried the university’s decision to partner with a South Korean munitions maker to introduce AI technology for military use. The researchers feared that the university would develop AI weaponry without “meaningful human control” and thereby open upon Pandora’s Box, as despots apprehended such weaponry to use against their citizenry. University President Shin responded saying that the university program would only pursue the development of AI to enhance command and control systems and navigation for unmanned undersea vehicles.

The unasked questions that the researchers have not quantified are what constitutes actual artificial intelligence and what oversight body should regulate its proliferation internationally. In early 2017, Congressman John K. Delaney launched an Artificial Intelligence (AI) Caucus for the 115th U.S. Congress, having the goal of informing the Congress of the implications of the technology, militarily, economically, and domestically. Thus far, the Caucus has focused on how to exploit the technology for economic gains, further fomenting an AI development race with nations like autocratic China who have introduced plans for China to become a global leader in AI development. Thus far, no leadership exists to define and resolve the threat.

The Landscape View

The end of the 18th Century saw the rise of the two renowned social contracts, the United States Constitution, which censored government power in the interest of the individual citizen, and the French Declaration of the Rights of Man, which censored individual citizens’ economic and political endeavors in the attempt to maintain equality for all. The two social contracts pioneered modern government to ensure freedom for the individual, regardless of class, kindred group, religious sect, and race. Since the founding of the social contracts, the American model for modern government has achieved greater success in championing the spread and security of democracy; whereas the French
model, which fosters more centralized government, has often instigated political strife, leading to two World Wars amongst Europeans, who adopted the French model.

As detailed in our overview, our site, thelandscapeoftruth.com, supports the view that America’s chiefly Protestant Christian population has encouraged the libertarian and progressive culture that made the American model of democracy successful. Though our crediting Protestantism would seem to encourage the sectarianism that the social contracts seek to overcome, our site pinpoints the elements of Protestantism that are responsible for the population’s acceptance of secular government’s rule over diverse peoples who do not necessarily share the same beliefs. We underscore that the Protestant Reformation’s emphasis on the original Apostolic doctrines of grace and election by faith, regardless of religious works, kindred relation, social standing, and male or female sex, cultivated libertarian values agreeing with modern democracy, unlike other religious and political beliefs that foment sectarianism.

Our doctrinal treatise, the Landscape of Truth, seeks to educate laypeople with a systematic understanding of the biblical Testaments, demonstrating the manner in which the Testaments overcome the sectarian worldviews that have oppressed humanity since the dawn of civilization. Not only does the treatise educate laypeople on the evolution of Western philosophy and economy unto the rise of modernity; the treatise features Immanuel’s Law, which educates laypeople on the birth of modern science. The Landscape viewpoint is that a citizenry who see the interrelationships of disciplines, philosophies, and cultures will make better informed decisions in advancing governments to meet the challenges of the potential threats that emerge like the ethical challenges surrounding artificial intelligence (AI).

Reflecting upon our lessons learned from Immanuel’s Law, which our doctrinal treatise the Landscape of Truth features; we understand that artificial intelligence is not even remotely intelligence. AI is merely a sophisticated tool; and like all tools, AI is only as harmful as the intent of those who wield the AI tool. And so, the threat of AI derives from the lawmakers who foster the belief that all cultures are equal, be they facilitators of democracy and human freedom or not. Until Western lawmakers censor the proliferation of dangerous technologies to non-democratic governments, which we trade freely with in the global economy, the threat of the AI technology will increase. We here at thelandscapeoftruth.com will be there to observe.